Adaptive Bayesian Shrinkage Estimation Using Log-Scale Shrinkage Priors

نویسندگان

  • Daniel F. Schmidt
  • Enes Makalic
چکیده

Global-local shrinkage hierarchies are an important, recent innovation in Bayesian estimation of regression models. In this paper we propose to use log-scale distributions as a basis for generating familes of flexible prior distributions for the local shrinkage hyperparameters within such hierarchies. An important property of the log-scale priors is that by varying the scale parameter one may vary the degree to which the prior distribution promotes sparsity in the coefficient estimates, all the way from the simple proportional shrinkage ridge regression model up to extremely heavy tailed, sparsity inducing prior distributions. By examining the class of distributions over the logarithm of the local shrinkage parameter that have log-linear, or sub-log-linear tails, we show that many of standard prior distributions for local shrinkage parameters can be unified in terms of the tail behaviour and concentration properties of their corresponding marginal distributions over the coefficients βj . We use these results to derive upper bounds on the rate of concentration around |βj | = 0, and the tail decay as |βj | → ∞, achievable by this class of prior distributions. We then propose a new type of ultra-heavy tailed prior, called the log-t prior, which exhibits the property that, irrespective of the choice of associated scale parameter, the induced marginal distribution over βj always diverge at βj = 0, and always possesses super-Cauchy tails. Finally, we propose to incorporate the scale parameter in the log-scale prior distributions into the Bayesian hierarchy and derive an adaptive shrinkage procedure. Simulations show that in contrast to a number of standard prior distributions, our adaptive log-t procedure appears to always perform well, irrespective of the level of sparsity or signal-to-noise ratio of the underlying model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Multiresolution Image Denoising Schemes Using Generalized{gaussian Priors

In this paper, we investigate various connections between wavelet shrinkage methods in image processing and Bayesian estimation using Generalized Gaus-sian priors. We present fundamental properties of the shrinkage rules implied by Generalized Gaussian and other heavy{tailed priors. This allows us to show a simple relationship between diierentiability of the log{ prior at zero and the sparsity ...

متن کامل

E-Bayesian Approach in A Shrinkage Estimation of Parameter of Inverse Rayleigh Distribution under General Entropy Loss Function

‎Whenever approximate and initial information about the unknown parameter of a distribution is available, the shrinkage estimation method can be used to estimate it. In this paper, first the $ E $-Bayesian estimation of the parameter of inverse Rayleigh distribution under the general entropy loss function is obtained. Then, the shrinkage estimate of the inverse Rayleigh distribution parameter i...

متن کامل

Bayesian trend filtering: adaptive temporal smoothing with shrinkage priors

Abstract We present a locally-adaptive nonparametric curve fitting method that we call Bayesian trend filtering. The method operates within a fully Bayesian framework and uses shrinkage priors to induce sparsity in order-k differences in the latent trend function, providing a combination of local adaptation and global control. Using a scale mixture of normals representation of shrinkage priors,...

متن کامل

Classic and Bayes Shrinkage Estimation in Rayleigh Distribution Using a Point Guess Based on Censored Data

Introduction      In classical methods of statistics, the parameter of interest is estimated based on a random sample using natural estimators such as maximum likelihood or unbiased estimators (sample information). In practice,  the researcher has a prior information about the parameter in the form of a point guess value. Information in the guess value is called as nonsample information. Thomp...

متن کامل

Bayesian Decision Theoretic Scale-adaptive Estimation of a Log-spectral Density

The problem of estimating the log-spectrum of a stationary Gaussian time series by Bayesianly induced shrinkage of empirical wavelet coefficients is studied. A model in the wavelet domain that accounts for distributional properties of the log-periodogram at levels of fine detail and approximate normality at coarse levels in the wavelet decomposition, is proposed. The smoothing procedure, called...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1801.02321  شماره 

صفحات  -

تاریخ انتشار 2018